EJERCICIO

Un servomecanismo de posición está formado por un motor eléctrico que arrastra una polea de radio **r** y masa despreciable, por medio del cual se mueve una pieza de masa **M** mediante una cuerda inextensible.

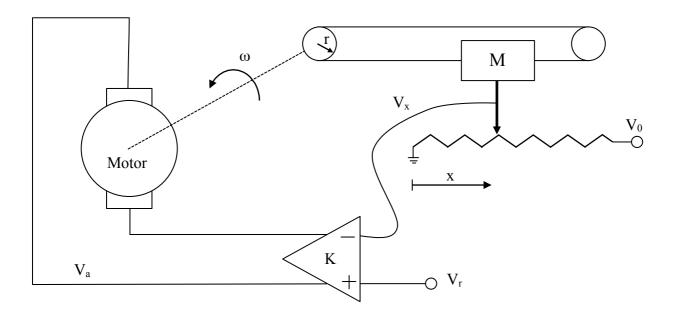
La pieza lleva unido a ella el cursor de un potenciómetro lineal, uno de cuyos extremos está conectado a una tensión $\mathbf{v_0}$, y el otro a tierra, siendo la tensión en el cursor $\mathbf{V_x} = \alpha.\mathbf{x(t)}$, donde $\mathbf{x(t)}$ es la posición de la pieza.

La tensión V_x se compara con una tensión de referencia V_r por medio de un amplificador diferencial-regulador de ganancia K.

Ecuaciones físicas del motor:

$$V_a(t) - K_b.\omega(t) = R.i(t)$$

$$K_t.i(t) = f.\omega(t) + (J_m + J_c)d\omega / dt$$


siendo f el coeficiente de rozamiento viscoso, J_m el momento de inercia del motor, J_c el momento de inercia de la carga ($J_c = M.r^2$) y $\omega(t)$ la velocidad angular del motor.

Datos:

$$\begin{array}{lll} M = 0"3 \ Kg & K_b = 0"09 \ v.s/rad & f = 0"2.10^{-3} \ N.m.s/rad \\ r = 1 \ cm & K_t = 0"1 \ Nm/A & J_m = 10^{-5} \ Kg.m^2 \\ \alpha = 0"5 \ v/cm & R = 5 \ \Omega & \end{array}$$

Se pide:

- 1) Ecuaciones del sistema
- 2) Diagrama de bloques tomando como señal de entrada V_r y de salida x.

